Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Phys Chem B ; 127(6): 1443-1458, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36735861

RESUMO

The importance of electrochemical analysis for charge-transfer science cannot be overstated. Interfaces in electrochemical cells present certain challenges in the interpretation and the utility of the analysis. This publication focuses on: (1) the medium polarity that redox species experience at the electrode surfaces that is smaller than the polarity in the bulk media and (2) the liquid-junction potentials from interfacing electrolyte solutions of different organic solvents, namely, dichloromethane, benzonitrile, and acetonitrile. Electron-donor-acceptor pairs of aromatics with similar structures (i.e., 1-naphthylamine and 1-nitronaphthalene, 10-methylphenothiazine and 9-nitroanthracene, and 1-aminopyrene and 1-nitropyrene) serve as redox analytes for this study. Using the difference between the reduction potentials of the oxidized donors and the acceptors eliminates the effects of the liquid junctions on the analysis of charge-transfer thermodynamics. This analysis also offers a means for evaluating the medium polarity that the redox species experience at the surface of the working electrode and the effects of the liquid junctions on the measured reduction potentials. While the liquid-junction potentials between the dichloromethane and acetonitrile solutions amount to about 90 mV, for the benzonitrile-acetonitrile junctions, the potentials are only about 30 mV. The presented methods for analyzing the measured electrochemical characteristics of donors and acceptors illustrate a means for improved evaluation of the thermodynamics of charge-transfer systems.

2.
Phys Chem Chem Phys ; 23(14): 8937, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33876054

RESUMO

Correction for 'Multifaceted aspects of charge transfer' by James B. Derr et al., Phys. Chem. Chem. Phys., 2020, 22, 21583-21629, DOI: .

3.
Phys Chem Chem Phys ; 22(38): 21583-21629, 2020 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-32785306

RESUMO

Charge transfer and charge transport are by far among the most important processes for sustaining life on Earth and for making our modern ways of living possible. Involving multiple electron-transfer steps, photosynthesis and cellular respiration have been principally responsible for managing the energy flow in the biosphere of our planet since the Great Oxygen Event. It is impossible to imagine living organisms without charge transport mediated by ion channels, or electron and proton transfer mediated by redox enzymes. Concurrently, transfer and transport of electrons and holes drive the functionalities of electronic and photonic devices that are intricate for our lives. While fueling advances in engineering, charge-transfer science has established itself as an important independent field, originating from physical chemistry and chemical physics, focusing on paradigms from biology, and gaining momentum from solar-energy research. Here, we review the fundamental concepts of charge transfer, and outline its core role in a broad range of unrelated fields, such as medicine, environmental science, catalysis, electronics and photonics. The ubiquitous nature of dipoles, for example, sets demands on deepening the understanding of how localized electric fields affect charge transfer. Charge-transfer electrets, thus, prove important for advancing the field and for interfacing fundamental science with engineering. Synergy between the vastly different aspects of charge-transfer science sets the stage for the broad global impacts that the advances in this field have.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...